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TRANSVERSE VIBRATIONS OF BELLOWS EXPANSION
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This paper presents the results of an analysis of the fluid-added mass in bellows expansion joints
during bending vibrations. The added mass is shown to consist of two parts, one due to
transverse rigid-body motion and the other due to distortion of the convolutions during
bending. The latter component, neglected in previous analyses, is shown to be important for
relatively short bellows, as are commonly used for expansion joints, and to become increasingly
important for higher vibration modes. The distortion component has been determined using
finite element analysis, and the results are presented in a graphical form for a typical range of
bellows geometries. The total added mass is given in a form suitable for hand calculations.
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1. INTRODUCTION

BELLOWS EXPANSION JOINTS ARE DESIGNED to absorb axial, transverse, and angular displac-
ments in piping systems. However, their flexibility also makes them susceptible to self-
excited vibrations (Gerlach, 1969; Weaver & Ainsworth, 1989). The onset of self-excited
vibrations at a bellows natural frequency is typically quite sudden and the resulting bending
stresses may produce fatigue failures in a relatively short period of time. Weaver & Ain-
sworth (1989) showed that the flow excitation was associated with a constant Strouhal
number of 0)45, based on the mean flow velocity through the bellows and convolution pitch
as the characteristic length. Thus, prediction of the flow velocity for self-excitation depends
on knowledge of the bellows natural frequencies.

Most studies have concentrated on axial vibrations and axisymmetric natural frequency
prediction methods of varying degrees of complexity (Gerlach 1969; EJMA 1980; Jakubaus-
kas & Weaver 1992). Much less work has been published on transverse vibrations (EJMA
1980; Ting Xin Li et al. 1986), and none of these studies have considered the effects of the
relative motion of the sides of a convolution, called convolution distortion, on the asso-
ciated fluid-added mass. In the simplest terms, the inertial effect of the fluid on a bellows in
axial vibration can be considered to be the mass of the fluid contained between the
convolutions moving as a rigid body, as shown in Figure 1(a). On the other hand, the entire
mass of the fluid contained in the bellows is associated with transverse vibrations as shown
in Figure 1(b). However, Jakubauskas & Weaver (1996) have shown that convolution
distortion in axial vibrations of bellows can produce significant added mass effects, espe-
cially for short bellows or higher vibration modes. This is caused by the relatively high
accelerations of the fluid being squeezed in and out from between the convolutions during
convolution distortion, as illustrated in Figure 1(c). No such analysis has been published for
transverse or non-axisymmetric vibrations of bellows expansion joints. Such vibrations may
0889—9746/98/040445#12 $30.00 ( 1998 Academic Press



Figure 1. Fluid added mass in bellows: (a) axial vibration (assuming pure axial translation of rigid convolu-
tions); (b) transverse vibration (assuming rigid body motion); (c) convolution distortion in bending.
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be particularly important for double bellows or bellows immediately downstream of pipe
elbows.

Part I of this study presents a theoretical model for the fluid-added mass of bellows
expansion joints undergoing transverse vibrations. It would be straightforward but fairly
cumbersome to compute the transverse natural frequencies of bellows, including the effects
of added mass, by modelling the bellows as a shell containing fluid and using a finite
element analysis. The particular approach used here was developed in an effort to make the
prediction of natural frequencies amenable to hand calculations. The bellows is treated as
a beam and analytical expressions are derived for the total fluid added mass, including the
effects of convolution distortion. The pressure distribution on the convolution walls is
determined using finite element analysis and the results are presented graphically in the
form of an added mass coefficient. Calculations are carried out for a single bellows to
demonstrate the relative importance of the various components of total bellows mass in the
first four modes of transverse vibration. In Part II of this paper, these results are used in
a theoretical model for transverse bellows vibration, and comparisons are made with both
experiments and the predictions of EJMA (1980).

2. THEORETICAL DEVELOPMENT

In considering the transverse vibration of a bellows expansion joint, the total fluid added mass
per unit length, m

f
, is assumed to be comprised of two components: one associated with

rigid-body motion, m
f1

, and the second associated with convolution distortion, m
f2

; thus,

m
f
"m

f1
#m

f2
. (1)

Only the rigid-body component, m
f1

, is considered in the EJMA Standard (1980) and, as
noted in the introduction, it is felt that neglect of the convolution distortion component
could lead to significant error. Treating these components separately seems reasonable on
physical grounds and makes the problem tractable.

Also treated separately is the fluid component of rotary inertia which is considered in
Part II of this paper.

2.1. RIGID-BODY COMPONENT, m
f1

This component is easily determined as the mass of fluid per unit length of bellows [see
Figure 1(b)]. If R@

m
is the radius of a cylinder containing the same volume of fluid per unit



Figure 2. Bellows geometry.
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length of bellows as the actual bellows, then

m
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m
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f
, (2)

where o
f

is the fluid density. Referring to Figure 2, it can be shown that
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where R
m

is the mean radius of the bellows, h is the convolution height, R
2

is the meridional
radius of the convolution crown, and p is the convolution pitch. Here, the half-thickness of
the convolution has been ignored and, since h and R

2
are relatively small compared to R

m
,

the error in this approximation is considered to be negligible. Note that p"2(R
1
#R

2
) and

for the particular case R
1
"R

2
, equation (3) reduces to R@
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m
. The rigid-body compon-

ent of added mass per unit length can therefore be expressed as
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2.2. CONVOLUTION DISTORTION COMPONENT OF ADDED MASS, m
f2

This component is much more complex than that for rigid-body motion as it involves the
relative motion of the convolution surface, which varies along the length of the bellows and
depends on both the bellows mode shape and the boundary conditions [see Figure 1(c)].



Figure 3. Initial and deformed shapes of bellows convolution due to moment M.

448 V. F. JAKUBAUSKAS AND D. S. WEAVER
For simplicity, the bellows in transverse vibration will be assumed to behave like a beam in
bending. While bellows are usually very short and may appear to be rather stubby beams,
the peculiar geometry of the convolutions makes bellows very flexible in overall bending
while maintaining substantial radial stiffness. Thus, significant rotations along the bellows
axis can occur, with both shear and ovalling of the cross-section remaining negligible. This
assertion is substantiated by the excellent agreement between theory and experiments
(Jakubauskas 1996).

Consider one-half of the ith convolution at some point x along the bellows axis to have
undergone a transverse displacement, X

k
(x), with associated moment, M. Since the added

mass associated with transverse rigid-body motion was treated separately in the previous
section, only the convolution distortion component caused by the moment M about the
neutral axis is considered here. This shape distortion is defined by displacement º (x, y,z, t)
along the convolution as shown in Figure 3. For convenience, this displacement function
will be referred to its maximum value which occurs at the convolution root, d

i
in Figure 3.

Using the beam analogy, plane sections remain plane and the effective strain, e, at the
convolution root is given by

e"
2d

i
p

, (5)

where p is the convolution pitch. Noting that the distance of the convolution root from the
neutral axis of bending is R

m
!h/2 and using the geometrical relationship for curvature, the

convolution root displacement can be written in terms of the beam displacement function in
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the kth mode, X
k
(x),
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i
"
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p ARm
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h

2BXA
k
(x), (6)

where the prime denotes differentiation with respect to x. Defining the normalized to unity
convolution surface displacement distribution as º*, the relative displacement of the
surface of the bellows convolutions along the entire bellows length may be written as

º"d
i
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2BXA
k
(x)º*¹ (t), (7)

where ¹ (t) gives the time dependence of the motion. If the fluid added mass for one
half-convolution is defined as j, then the kinetic energy for this mass in terms of the
displacement along the half-convolution surface, S, can be written for the ith half-convolu-
tion as
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Over a typical range of convolution geometries, h/R
m
"0)19$0)04 and

(R
2
!t/2)/R

m
"0)0316$0)0055, calculations using the associated convolution displace-

ment º* show that the surface integral in equation (8) is nearly constant
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S

º*2

S
dSK0)132. (9)

The total kinetic energy of the fluid due to convolution distortion is then the sum of the
individual components along the bellows, i.e. for the 2N half-convolutions,
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Equation (10) gives the total kinetic energy of the fluid mass due to convolution distortion
in terms of the added mass per one half-convolution, j.

The fluid-added mass per unit length due to convolution distortion, m
f2

, varies along the
length of the bellows, depending on the local bending moment. However, if m

f2
is con-

sidered as the average fluid added mass per unit length along the bellows for each mode
shape, k, then the associated total kinetic energy is given by

K"P
l

0

m
f2

wR 2
k

2
dx, (11)

where w
k
is the beam displacement in the kth mode,

w
k
"X

k
(x)¹ (t). (12)

Substituting equation (12) into equation (11) yields
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The average fluid added mass per unit length in the kth mode, m
f2

, can now be
determined in terms of the one half-convolution distortion added mass by equating
equations (10) to (13).

m
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"a

f2k
j, (14)

where
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The integrals in equation (15) may be solved directly once the mode shape function, X
k
(x), is

known. The determination of the fluid added mass per one half-convolution, j, is covered in
the following section.

2.3. ANALYSIS FOR HALF-CONVOLUTION ADDED MASS, j

From classical hydrodynamics [for example, see Milne-Thomson (1968)], if the fluid is
assumed to be inviscid and incompressible, the kinetic energy of the fluid for the ith
convolution of the bellows can be written in terms of a velocity poetential, ', and the
velocity normal to the bounding surface, L'/Ln, as
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On the other hand, this kinetic energy can also be written in terms of the added mass per
half-convolution, j, and the convolution surface displacement, º, as given in equation (8):
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where S is the surface area of the bellows half-convolution. Equating kinetic energy
expressions (16) and (17) gives the half-convolution added mass expression for the three-
dimensional flow due to convolution distortion

j"!o
f
S
PP

S

'
L'
Ln

dS

PP
S

ºQ 2 dS .

(18)

To use the above equation it is necessary first to calculate the velocity potential of the flow
excited by the deformation of the convolution wall, º. Since this flow is three-dimensional,
the velocity potential is described by the Laplacian [see, for example, Milne-Thomson
(1968)],

L2'
Lx2

#

L2'
Ly2

#

L2'
Lz2

"0. (19)

For a bellows in bending it is readily seen that the x—z, and y—z planes in Figure 4 are planes
of symmetry, while the x—y plane is one of anti-symmetry (for bending about the y-axis, the



Figure 4. Fluid solution domain with boundary conditions.
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convolution displacement in the negative z-direction is minus that in the positive z-
direction). Therefore, it is sufficient to solve the problem for just one-eighth part of
a convolution, with the appropriate boundary conditions.

Considering the convolution surface displacement, º, the components in the coordinate
axes directions are defined as º

x
, º

y
, and º

z
. It was shown by Jakubauskas (1991) in the

case of axial deformation of the bellows, that the axial displacements (displacements along
x, see Figure 4) are much larger than the radial ones. A similar relationship holds in the case
of the bending deformation of the bellows as well when considering only the effects of
convolution distortion, i.e., the radial and transverse displacements relative to the neutral
axis of bending are negligible in comparison with the axial displacement. Therefore, in
further considerations of the boundary condition on the convolution surface, just º

x
will be

taken into account, and º
z
and º

y
will be neglected. The surface displacement field on the

convolution could be determined precisely using a finite element analysis of the bellows as
a vibrating shell. However, a good estimate may be obtained much more simply by
assuming that the dynamical displacemet field is the same as would be obtained under static
loading and invoking the beam bending model. Thus, the bending deformation shape of the
convolution wall in the x—z plane, º

x
(at the top of the convolution in Figure 4) is

determined from the analysis of the axial deformation shape of the bellows under static
loading, º

x45
. This shape was determined for axial vibrations of bellows by Jakubauskas

(1991) using an axisymmetric shell finite element analysis. Now, using the assumption that
the bellows in transverse vibration behaves like a beam in bending, plane sections remain



Figure 5. Fluid domain discretization.
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plane and the radial convolution shape is a linear function of its distance, z, from the neutral
plane of bending:

ºKº
x
"º

x 45

z

R
m
!1

2
h
¹ (t). (20)

The boundary condition for the fluid domain on the vibrating boundary is the impermeabil-
ity condition

L'
Ln K

S

"!U0 · n. (21)

Thus, the convolution shape, º
x 45

, computed as noted above, was given the time-dependent
bending distribution of equation (20) and used in equation (21) as the Neumann boundary
condition on the bellows surface. The rest of the boundary conditions are shown in Figure 4.
Since the added mass coefficient being calculated is an average value for the bellows,
adjacent convolutions are assumed to have the same displacement, and no fluid will move
between convolutions as the result of bending. This approximation leads to the homogene-
ous Neumann boundary condition on the plane between adjacent convolutions.

The velocity potential problem was solved using finite element analysis. The 20-noded
isoparametric brick element was chosen to fit the curved domain boundary along the
convolution wall. The domain was divided into 162 such elements, as shown in Figure 5.



Figure 6. Half-convolution added mass coefficient, k, for a range of typical bellows geometries.
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Further refinement of the grid produced no change in the results. The program was written
in Fortran which accommodated both the velocity potential, ', and the added mass, j,
calculation codes. The added mass calculation results for one half-convolution over a typi-
cal range of bellows geometries are presented graphically in Figure 6 in the form of the
dimensionless coefficient of the added mass, k, based on the mean radius of the bellows, R

m
.

Therefore, using the k values taken from the graphs, the added mass j can be calculated as

j"kR3
m
o
f
, (22)

or, using equation (14), the added mass caused by convolution distortion is
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o
f
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The total added mass, using equations (4) and (23), can be expressed as
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As was pointed out by a reviewer of this paper, the introduction of the half-convolution
added mass, j, is unnecessary. The same final result can be obtained without this intermedi-
ate step. However, the authors’ computer code was developed to compute j as defined in
equation (18) and these results were used with equation (22) to generate the dimensionless
added mass coefficient, k, plotted in Figure 6. Therefore, the theoretical development
including j was presented here.
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3. EXAMPLE CALCULATIONS AND DISCUSSION

In order to demonstrate the use of equation (24) for the total fluid-added mass of a bellows
in transverse vibration and to evaluate the relative importance of the various components,
calculations will be given for a particular case. The specific example was chosen because it
was used in a subsequent experimental program. The physical parameters are:
R

m
"0)0842m, h"0)0157m, R

1
"0)00353m, R

2
"0)00248 m, t"0)368mm, the bellows

live length, l"0)156m, and the internal fluid density o
f
"1000 kg/m3.

Assuming that the bellows is fixed against rotation at both ends, as would normally be
the case for a single bellows expansion joint installed in a piping system, the mode function,
X

k
, and its second derivative can be found in standard texts on beam vibrations. Substitu-

tion of X
k

and XA
k

into equation (15) and carrying out the integration yields

a
f2k

"0)666
A2

1k
l4 ARm

!

h
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p, (25)

where, for the first four modes, A
1k

is 22)37, 61)67, 120)9, 199)9 for k"1, 2, 3 and 4,
respectively.

Using equations (24) and (25) together with Figure 6, the value of the mass per unit length
of the three components m

b
, m

f1
, and m

f2
, the total mass per unit length, m

505
and the ratio

m
f2

/m
505

are given in Table 1 for the first four modes of transverse vibration. It is seen that
the convolution distortion component of added mass per unit length is only about 5.5% of
the total in the first mode but that its significance increases substantially as the mode order
increases. It is about 30% in the second mode and over 82% by the fourth mode.

The effect of convolution distortion on fluid added mass for bellows in transverse
vibration has not been previously considered. To provide an indication of the importance of
taking such a component into consideration, the natural frequency calculation procedure
provided in the EJMA (1980) Standard was used to determine the first four transverse
natural frequencies, with and without m

f2
as given in Table 2. The percentage difference in

the first mode frequency resulting from neglecting the fluid-added mass/unit length due to
convolution distortion is less than 3% and, at least for this particular bellows, is acceptable
from an engineering point of view. However, as the mode number increases, the convolution
distortion component becomes increasingly important and cannot reasonably be ignored. It
should be noted that the error caused by ignoring m

f2
is unconservative, and actual natural

frequency being lower than that predicted when m
f2
"0. It is important to note here that

rotary inertia of the bellows cross-section is also ignored in the EJMA (1980) Standad. This
makes these predictions for natural frequencies even more unconservative. Morishita et al.
TABLE 1
Components of bellows mass for various modes (kg/m)

Mode number
Component of mass 1 2 3 4

m
b

4)87
m

f1
21)6

m
f2

1)55 11)7 45)1 123
m

505
28)0 38)2 71)6 149

m
f2

/m
505

0)055 0)307 0)630 0)826



TABLE 2
Comparison of frequency calculation results (Hz)

Mode EJMA Standard EJMA Standard % diff.
number without m

f2
with m

f2

1 140 137 2)70
2 386 324 16)3
3 753 464 38)4
4 1252 535 57)3
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(1986) included rotary inertia in their analysis, and its importance has been proven by
Jakubauskas (1996). The predictive technique outlined here has been used in a much more
comprehensive theoretical and experimental research program (Jakubauskas 1996). Experi-
ments in both still and flowing fluids have validated the theory presented in this paper with
errors in the transverse mode frequencies less than 5% in the first four modes (Jakubauskas
1996). The theoretical model for transverse bellows vibration, including the added mass
components developed here, and comparison with experiments, are presented in Part II of
this paper.

4. CONCLUSIONS

A theoretical model has been developed for determining the fluid-added mass of bellows
expansion joints in transverse vibration. The total fluid added mass is treated in terms of
rigid-body and convolution-shape distortion components. The results have been put in
a form which enables relatively simple computation for a practical range of bellows. The
results show that the component of added mass per unit length attributable to convolution
distortion, which has been neglected in previous analyses, becomes increasingly important
with increased mode number. For longer bellows, its effect may be small in the first mode
but is not negligible in higher modes. For shorter bellows, the distortion component may be
significant even in the first mode. Neglect of the distortion component of fluid added mass
results in an underestimation of the total bellows mass per unit length and, therefore, an
overestimation of the true transverse natural frequencies of bellows.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES

EJMA 1980 The Standards of the Expansion Joint Manufacturer’s Association Inc., 1980, 5th edition,
New York.

GERLACH, C. R. 1969 Flow Induced vibrations of metal bellows. ASME Journal of Engineering for
Industry 91, 1196—1202.

JAKUBAUSKAS, V.F. 1991 Investigations of natural vibrations of bellows. M.Eng. Thesis, McMaster
University, Hamilton, Ontario, Canada.

JAKUBAUSKAS, V. F. 1996 Transverse vibrations of bellows expansion joints. Ph.D. Thesis, McMaster
University, Hamilton, Ontario, Canada.



456 V. F. JAKUBAUSKAS AND D. S. WEAVER
JAKUBAUSKAS, V. F. & WEAVER, D. S. 1996 Natural vibrations of fluid filled bellows. ASME Journal of
Pressure »essel ¹echnology 118, 484—490)

LI, T. X., LI, T. X. & GUO, B. L. 1986 Research on axial and lateral natural frequencies of bellows with
different end conditions. Paper 86-PVP-14. New York: ASME.

MILNE-THOMSON, C. B. E. 1968 ¹heoretical Hydrodynamics, 5th edition. London: MacMillan & Co.
Ltd.

MORISHITA, M., IKAHATA, N. & KITAMURA, S. 1989 Dynamic analysis methods of bellows including
fluid-structure interaction. In Metallic Bellows and Expansion Joints — 1989 (eds C. Becht IV, A.
Imazu, R. Jetter & W. S. Reimas), PVP-Vol. 168, pp. 149—157. New York: ASME.

WEAVER, D. S. & AINSWORTH, P. 1989 Flow-induced vibrations in bellows. ASME Journal of Pressure
»essel ¹echnology 111, 402—406.

APPENDIX: NOMENCLATURE

EI beam bending stiffness
h convolution height
k vibration mode number
K kinetic energy
K

i
kinetic energy of the ith convolution

l the length of the bellows
m

b
bellows mass per unit length

m
f1

added fluid mass per unit length (rigid-body component)
m

f2
added fluid mass per unit length (distortion component)

m
f

total added fluid mass per unit length
M local bending moment
N number of convolutions
p convolution pitch
R

m
mean radius of bellows

R
1

radius of convolution root
R

2
radius of convolution crown

S half-convolution surface
t nominal thickness of bellows material
¹ (t) time harmonic function
º* normalized to unity relative convolution displacement
º relative convolution displacement
º

x
, º

y
, º

z
convolution displacements in the coordinate directions

º
x45

axisymmetric static relative convolution displacement
w
k

transverse (bending) displacement of bellows axis in the kth mode
x, y, z fixed coordinates
d
i

half-convolution root relative displacement
e effective axial strain at convolution root
j half-convolution added fluid mass
k half-convolution added mass coefficient
o
f

density of fluid
' velocity potential
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